HEAT FLOW GEOMETRY

Fig. D.1. Three-slab heat flow geometry.

xquil.

10

4 - 5410 F. D. C.

Boundary conditions

$$\Psi(b,t) = 0, \quad \eta(-b,t) = 0$$

Jump conditions

$$\phi(a,t) = \Psi(a,t) \qquad \phi(-a,t) = \eta(-a,t)$$

$$\lambda \phi_X(a,t) = \Lambda \ \Psi_X(a,t) \quad \lambda \phi_X(-a,t) = \Lambda \eta_X(-a,t).$$
 (\lambda, \Lambda are thermal conductivities.)

Define the Laplace transform of ϕ by

$$\Phi (s,x) = \int_{0}^{\infty} \varphi(x,t) e^{-st} dt$$

Multiply the partial differential equation for ϕ by e^{-st} and integrate over all time:

$$\int_{0}^{\infty} e^{-st} \left(\frac{\partial \varphi}{\partial t}\right)_{x} \partial t = k \int_{0}^{\infty} \left(\frac{\partial^{2} \varphi}{\partial x^{2}}\right)_{t} e^{-st} dt$$

Integration by parts gives $-\varphi(x,0) + s\Phi = k \frac{d^2\Phi}{dx^2}$

We now have an ordinary differential equation for .

 $(\frac{d^2}{dx^2} - \frac{s}{k})_{\Phi} = -\frac{T_1}{k}$. Similar results are obtained for the other regions. The solutions to the differential equations for the Laplace transforms can be expressed:

Region 1,
$$\Phi(s,x) = A \cosh(\mu x) + B \sinh(\mu x) + \frac{T_1}{s}$$
, $\mu = \left(\frac{s}{k}\right)^{1/2}$
Region 2, $\Phi(s,x) = C \cosh(\mu px) + D \sinh(\mu px) + \frac{T_2}{s}$, $p = \left(\frac{k}{\kappa}\right)^{1/2}$
Region 3, $H = E \cosh(\mu px) + F \sinh(\mu px) + \frac{T_2}{s}$.

After some effort, the coefficients can be found by applying the several conditions of the problem. Then the inversion